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Abstract 

The effect of radiative damping of transverse oscillations of positrons in the planar channel of a crystal is considered 
under realistic conditions when multiple scattering of the positrons on the atomic electrons is taken into account. @ 1997 
Published by Elsevier Science l3.V. 
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1. The influence of the radiation reaction on the 

particle motion in a system with a strong transverse 
focusing is now under active study (see Refs. [ l-31 

and references therein). One possible realization of 
such a system is the planar channeling of positrons, 
where positrons are moving in the superstrong micro- 

scopic focusing field formed by crystalline planes. The 
existence of the phenomenon of radiation damping of 
transverse oscillation of positrons was found nearly 

two decades ago [ 41. 

2. In Ref. [4] the motion of a particle in an os- 
cillatory transverse potential well U(x) = kx2/2 was 
considered under the influence of the force of radia- 
tive braking as given in Ref. [5]. The following set 
of equations was derived, 

_f++Qk+ k” =o, 
my 

y + $y2x2 = 0, 

* E-mail: baier@inp.nsk.su. 

where x is the transverse coordinate, y = e/mc2 is the 
Lorentz factor of the positron, a = 2ke2/3m2c3; below 
wewillputc=fi=l. 

Averaging over particle oscillations in a channel 
(over “fast” variables) one obtains 

d_L + UE_L + C&y = 0, y + ye1 = 0, (2) 

where EL is the transverse energy of the particle. This 
set contains “slow” variables only. It coincides with 

the set obtained in Ref. [ 31 by two different methods 
and given in terms of y and J, = EL/O, where w = 
fi is the oscillation frequency. 

The solution of this set (see Ref. [ 31) is 

e~(0)e-a’ 
El(t) = /p/5(f) ’ 

Y(O) 
YCf) = P/5(f) ’ 

R(t) = 1 + $QO( 1 -e-O’), (3) 

where QO = 2e1(0) y( 0) /m. If one introduces the so- - 
called multipolarity parameter p = 2y2u:, where z is 
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Table 1 
Parameters of the potential for the ( 110) plane and characteristics 
of damping and antidamping processes 

Crystal T + uo 1, A PO 71 rc 
(K) (lop8 cm) (eV) (cm) 

Cd 293 1.26 23 2.3 1.7 9 6.8 1.1 
Si 293 1.92 23 5.5 2.6 10.6 7.3 1.5 
Ge 293 2.00 40 3.4 3.2 11.1 7.5 1.6 
W 293 2.24 130 0.33 4.1 11.8 7.7 1.7 

the mean square of the transverse velocity (when Q < 
1 the radiation is dipole, when Q >> 1 the radiation 
is of magnetic bremsstrahlung nature, the case Q N 
1 is intermediate and many harmonics of radiation 
are essential), then e = 2.e~J t)y(t)/m and QO is the 
initial value of this parameter. 

When at < 1, one has 

El (0) 
&l(t) = ~ 

Y(O) 
Rf"( t) ’ 

Y(f) = - 
R;f5( t) ’ 

RI(t) = 1 + &at, (4) 

so that the transverse energy and total energy initially 

damp with power laws in the case when QIJ >> 1. How- 
ever, the exponential damping factor in the transverse 
energy becomes more important for longer time (dis- 

tance). When at > 1, one has 

EL(t) = 
ale-” 

R’i5 ’ 
2 

R2 = 1+ &a. (5) 

The exponential damping factor in Eqs. (3)-( 5) can 
be written in the form exp (-Z/la), where 1 is the 

length of the way of the particle in the crystal. The 
characteristic damping length I, for (110) plane in 
different crystals is given in Table 1 along with the 
distance between the planes dPt and the depth of the 
potential well Ua. Note that the length 1, is quite close 

to the standard radiation length &,d in corresponding 
media and only for diamond 1, is a few times shorter 

than X&d. 

where 8: is the mean value of the square of the X- 

component of the angle of the multiple scattering of 
a positron. The interaction of a positron with atomic 
electrons can be split into two parts. The first con- 

tribution to the square of the angle of the multiple 
scattering gives scattering on electrons situated in- 
side planes forming the planar channel in which the 

positron is moving. The maximal momentum transfer 
follows from the condition that a positron should not 
go out of the channel and minimal momentum trans- 

fer is defined by maximal remoteness of the positron 
from the atomic plane, 

2 
qrnax = 2&o = .ppm2, 

1 
qmin=--, 

d PI 

4ilax _ $1 -- 42 N ep x I@, 
din AC 

(7) 

The form of the transverse potential for planar chan- where Ua is the depth of the transverse potential well in 
neling of electrons is very different from the oscillator which channeling occurs, dpl is the distance between 

potential and atomic nuclei are situated in the mid- neighboring planes, AC = l/m = fi/mc is the electron 

dle of the channel, so that the multiple scattering of Compton wavelength, ep = 2eUe/m2. In the region 

electrons is amplified compared with an amorphous q 2 qh,, one can consider scattering as a scattering on 

medium. The transverse potential for positrons is more 
similar to the oscillator one and the positrons in the 
channel are moving mostly far from the atomic nu- 

clei, so that multiple scattering of the positrons is di- 
minished compared with an amorphous medium. So, 

only the case of channeling of particles with positive 
charge is interesting from the point of view of damp- 

ing of the transverse oscillations of a particle moving 

in a planar channel. Although in real crystals the pla- 
nar potential is quite different from the oscillator one 
and the spread of frequencies of motion of a positron 
in a channel is of the order of one [ 61, nevertheless 
damping in the oscillator potential is a very useful 
model the importance of which is connected with the 

existence of an exact analytical solution. 

3. The only interesting situation is the case when 

positrons are moving far from the crystalline planes, 
when the main scattering process is scattering on 
atomic electrons, Connected with this scattering in- 

crement of the transverse energy is (see Ref. [ 61, 
Section 10) 

EL=_2 E Aa 

A1 2 Al ’ 
(6) 
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free electrons and its cross section is defined, within 
logarithmic accuracy, by the local density of atomic 

electrons n(x) depending on the positron coordinate 
x ( 1 /q < &,I). So, we have for the square of the angle 

of multiple scattering the following expression, 

$Jz -- 4a%(x> 4- 

Al -- E2 s 

2 2 
q,d q 2ra2n(x) In & 

94 = &2 42.“’ 

qmin 

(8) 

where cr = e2 = l/137, q’ = qz + q$. Note that 

the ratio qkax/q& and consequently the square of 

the angle of multiple scattering does not depend on 
the particle’s mass. Now we compare the square of 
the angle of multiple scattering of relativistic protons 

moving in a planar channel with the expression for 
ionization losses (stopping power) in a corresponding 
amorphous medium: 

SE ( ) zi am= (9) 

where ye = E/M, M is the proton mass, and 
0: = 4rn,,/m is the plasma frequency; nam is the 

mean density of electrons in an amorphous medium. 

Taking into account that 

00 -= J 47rffna, ~ N fix 10-5, 
m m3 

2YM 2EUO 

z = MUo& - @” 
(‘0) 

and comparing Eqs. (7)) (8) with Eqs. (9)) ( 10) we 
find that 

$_l 8.5 n(x) 
Al - 2E2 ?% am rla,,, o- (1’) 

We use the expression ( 11) for calculation of the 
dechanneling length for protons with energy 10 GeV 
~e~200GeVmovinginthe(l10)or(l11)chan- 
nels in Si giving a result which agrees satisfactorily 

with the experimental data [ 71. 
The contribution of electrons situated outside planes 

which are forming the channel under consideration 
(contribution of long distances, x > &,I) to the mean 
square of the angle of multiple scattering has the form 

Ai?: 4a2nm 
1 I4 

s 

$&I = 2ra2n, 1 -- 
Al E2 

9 
& e2 In w;d;,’ 

4mx Zd;, 
w2d2 z - 0 PI 

dp”,m 
= 4mcuzk N z x lo-4. 

dPl 
(12) 

The total contribution of both short and long distances 
to the increment of the transverse energy is 

A.sl T(Y~ -=- 
Al E 

n,,ln $J + n(x) ln(pp x LO’) . 

(13) 

The ratio rC of the contribution of long distances to 

the contribution of short distances is given in Table 1. 
For the oscillatory potential U(x) = kx2/2 (which 

describes either averaged characteristics of a one- 
parametric potential, or the motion of the particle 
near the bottom in any potential well), one has from 

the Poisson equation 

k 
n(x) = __ = 

2uo 

4lrCY 
- = const. 
n-ad;, 

To proceed with the inclusion of multiple scattering in 

Eq. (2)) we use Eqs. ( 12) and ( 13) and the last equa- 

tion, which are self-consistent for the oscillatory po- 
tential. Besides, when one uses Eqs. ( 12) and ( 13), it 
is necessary to substitute q& -+ 2~~1 (or 4 -+ e), 
since in the case when the increment of the transverse 

energy A&l > EL in one interaction (time of SCat- 

tering is much shorter than the period of motion) one 

cannot describe the motion in terms of a classical tra- 
jectory. 

Furthermore, the analysis below shows that within 

the adopted accuracy (logarithmic accuracy) one can 
put in the equations of motion that e = 1 in the argu- 
ment of the logarithm. As a result we obtain 

b 
dl+aE~+~E:Y--y=O, j’+ ;y2El = 0, 

where 

(14) 

curd2 
, A=n,-&. 

0 

Values of A (the expression for A is valid for crystal 
structures fcc(,,, bee) for some crystals are given in 
Table 1. 



W Baier; Wf Katkov/Physics Letters A 232 (1997) 456-462 459 

It is convenient to rewrite the set of equations ( 14) 
in terms of functions y(t) and r(t) = EL (t>r( r) for 
which the set of equations is simplified considerably: 

5ar2 
i+ar+- 

4m 
-b=O, T+Eyr=O, (15) 

It is seen that the first equation of this set contains 
the function r(t) only and this is a differential equa- 

tion with separable variables, the solution of which 
is straightforward. With the function found, r(t), one 

can integrate the second equation of the set of equa- 
tions ( 15). The solution of the set of equations can be 
presented in the form 

2r(t) 4 G(t) e(t) = - = -- 
m 5 F(t) ’ 

4&I (0) 
El(t) = ~ 

G(t) 
5@* F’,s(t)(29)4,s exp [%V - l)atl’ 

415 
exp [-_5(77 - l)atl, 

(16) 

where 

F(t) = PI - p2e-avt, 

PI=1+rl+$o, /32=1-rl+&30, 

G(t) = PI (v - 1) + /32(77 + l)e-aq’, 

“rl=+5T3$L (17) 

The value of the parameters for some usable crystals 
is given in Table 1. When the multiple scattering is 
turned off (v = 1) , one returns to the solution (3). 

Now we will proceed with a qualitative analysis of 
the set of equations ( 15) which we rewrite in the form 

de 
-@+e+5$2P=0, g+y=o, (18) 

where T = at; we introduce 

ln(e105) +Alng 

p,&=3 
ma 8 

ln(105) +Aln$ (19) 

The parameters flu for some usable crystals are shown 
in Table 1. So, in this analysis we take into account 
that /? is logarithmically dependent on energy. When 

@ > 1 and T << 1 one can neglect the terms Q - 2p 
in the first equation ( 18) since the value of Q is still 
large at T CC 1. Then we have the set of equations 

g+y=o, g +.y- =o, 

the solution of which is 

El(O) 
Ed = - Y(0) 

Rff5(T) ’ 
y(t) = - 

R;15(T) ’ ’ 

eo 
‘= R,(T)’ 

RI(T) = It &T. (21) 

It coincides with Eq. (4) where multiple scattering is 
neglected. 

WhenTNl/JPfromEq.(21)onehas~Nfi. 
In this situation all terms in the first equation in 
Eq. ( 18) is of order one and multiple scattering is 

turned on. In this case with a good accuracy we have 
/? N pa. With further increase of the T function Q 
tends to its stationary value, 

des 
F = 0, 

5e: 
& + 8 - 2p = 0, 

@s N &/G-g& - 1). (22) 

Note, that for the crystals we considered (diamond, 
Si, Ge, W) for the (110) plane one has es N 5 and 

one can neglect the dependence of p on Q (/3 N 

/?a). In this region of T the total energy decreases 
exponentially, y(T) K exp( -psT/2) and the trans- 
verse energy increases exponentially since the value 

e = 2yel/m remains constant. 
In the opposite case the Q,J < 1 value of p + +Q’ 

remains small compared with 2p until T N l/G. In 
this case one can neglect damping effects (terms c( 
e, e2) and the function Q varies only due to multiple 

scattering: 

=o, (23) 

where C = 25 for diamond and C = 31 for W. Solving 
this equation by the method of successive approxima- 
tions we find after the first step 

ln(2PoT + .po) - 1 

c > 
+ eo. 

(24) 
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At & < T < I/@, p(T) N 2/3oT is independent of 
the initial value eo and (with logarithmic accuracy) is 

defined by the value PO. With increasing T the function 
e attains a value of the order of J;is and one has to 
take into account all the terms in the set of equations 

( 18) and we have the situation discussed above: e -+ 
es, the total energy decreases exponentially, while the 
transverse energy increases exponentially. 

So, we have shown that with logarithmic accuracy 
(this is just the accuracy with which we could calcu- 

late p) one can neglect the dependence of /3(e) and 

put P = PO. 

The solutions ( 16) of the set of equations ( IS) 
are illustrated also in Figs. 1 and 2. The ratio 

EL(T) /EL (0) versus T = at is given in Fig. 1. Curve 
1 in (a), (b) and (c) present the case 77 = 1 when the 
multiple scattering is turned off. These curves show 
damping of the transverse energy and coincide, natu- 

rally, with results of Ref. [ 31. However, the multiple 
scattering changes the situation drastically. For low 

ec the transverse energy is increasing from the very 
beginning, while for m = 100 the transverse energy 
first is decreasing but starting from T N 1 it ceases to 
decrease and begins to increase. So, under this con- 
dition decrease of the transverse energy is possible in 
a very short interval of T = at and only when a is 

high enough. The ratio y(T)/y(O) versus T = at is 

given in Fig. 2. Here one can see that in the absence 
of multiple scattering the total energy first decreases 

(for high mo> and then tends to some constant, while 
the multiple scattering causes an unlimited decrease 
of the total energy. So, the behavior of the curves in 

the figures illustrates numerically the results of the 
above qualitative analysis. 

4. Using the results obtained we can analyze the 
behavior of a positron beam entering the oriented crys- 

tal at different energies. At low energy the condition 
ec < 1 is fulfilled for all the particles of the beam 
(pa < eP < 1). In this case the positrons quit the 
channel during a time which is much shorter than the 

radiation damping time (N l/u) and in this case one 
can neglect radiation damping. Indeed, the character- 
istic dechanneling time rd is (see Eqs. (23)) (24) ) 

El = 
P0am2 
-td = UO, 

E 

Fig. 1. Ratio EL ( T)/E~ (0) versus T = at for different values 

of parameter m. (a) For QIJ = 0.1 curve 1 is for 7 = 1 when 

the multiple scattering is turned off; curves 2, 3, and 4 are for 

71 = 1 S. 2,3 respectively. (b) Same for m = 1. (c) Same for 

m = 100 but curves 1, 2, 3, 4 are for 7) = 1, 2, 3, 5 respectively. 

&UO 4 td=-=--- 
P0am2 Woa 

< -$ (25) 

At high energy when ep > 1 the initial distribution 
of the positrons over m for an oscillator potential has 
the form (see Eq. (9.24), of Ref. [ 61) 

dN(eo) = $&. (26) 
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‘3 “1. 

0 005 

(4 

Fig. 2. Ratio y(T)/y(O) versus T = ar for different values of 
parameter QCJ (a) For Ed) = 0.1 curve 1 is for 11 = 1 when the 
multiple scattering is turned off; curves 2, 3, 4 are for TJ = 2, 3, 
5 respectively. (b) Same for QO = 1. (c) Same for &I = 100. 

Let us consider a fraction of positrons with m 6 1, 
which is small, 

NC@0 < 1) = s 
0 

dN(eo) = &. (27) 

These are particles moving well inside a channel with 
energy EL < UO/Q~ << VO. As one can see from the 

above analysis, during a time t N 1 /ua all the par- 
ticles of this group acquire a value p 21 es, while the 

energy of the particles diminishes slightly. Later on 
the transverse energy increases, 

Ed N U0: exp(Qsat/2) (28) 

and during a time t N (2/e,a) In er, positrons of this 

group go out of the channel. So, the total dechanneling 
time of this fraction is 

(29) 

where ct = 5. An analogous consideration for the main 
fraction of positrons (Qu N 4) gives cl = 1. 

The analysis above was performed in the frame of 

classical electrodynamics. As is known [ 61, quantum 

effects are governed by the parameter xc = &Jg/dm3. 
Since quantum effects in radiation are turned on rather 
early, the value xc > 0.1 can be considered as a 
boundary of the quantum region. From this estimate 

one sees that quantum effects become significant start- 
ing from the energy E - 60 GeV in tungsten and E - 
600 GeV in silicon. We neglect also the diffusion of 
the transverse energy in the scattering process. Both 
these effects could be considered in a consistent way 
using the distribution function of channeled particles 

only. 

5. The idea to use particle channeling in oriented 
crystals in the accelerator technique is a very attrac- 
tive one. However, it appears that even in ideal con- 
ditions there is damping of the transverse oscillations 

without loss of the total energy only in the case cc < 
1; otherwise the particle loses its total energy along 
with damping of transverse oscillations. Inclusion of 

the interaction of the channeling particle with atomic 
electrons deteriorates the situation drastically. Damp- 

ing on a rather limited scale is possible only in the 

case et, > 1 in a very narrow interval of time. Oth- 
erwise we have antidamping: the transverse energy is 
increasing while the total energy is decreasing. Fur- 

thermore, we do not take into account scattering of 
the positrons on fluctuations of the planar potential, 

which can contribute essentially when the positrons 
are moving close to the atomic planes, connected with 
this scattering radiation. 

We are grateful to V.M. Strakhovenko for useful 
discussions. 
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